Combinatorics and Graph Theory III Tutorial 9

Guillaume Aubian

1 VC-dimension

Let *H* be a set system and *C* a set. We define $H \cap C = \{h \cap C \mid h \in H\}$. *C* is said to be *broken* by *H* if $|H \cap C| = 2^{|C|}$. The *VC*-dimension of *H* is the largest cardinality of a set that is shattered by *H* (it can be infinite).

- 1. What is the VC-dimension of the set system of all subsets of \mathbb{R}^2 ?
- 2. What is the VC-dimension of the set system of all convex polygons?
- 3. What is the VC-dimension of the set system of all half-planes?
- 4. Consider the system of all axis-aligned rectangles. Prove that it does not break all sets of four points.
- 5. Prove that the VC-dimension of the set system of all axis-aligned rectangles is 4.

Let \mathcal{F} be a finite set system. We want to prove that \mathcal{F} breaks at least $|\mathcal{F}|$ subsets of $\bigcup_{F \in \mathcal{F}} F$.

6. Prove it whenever $|\mathcal{F}| \leq 1$.

Thus we can suppose $|\mathcal{F}| \ge 2$, and thus there exists $c \in \bigcup_{F \in \mathcal{F}} F$ that does not appear in every set of \mathcal{F} . Let \mathcal{F}_1 be the sets of \mathcal{F} containing c, and \mathcal{F}_2 those not containing c.

7. What can you say about a set broken by \mathcal{F}_1 or \mathcal{F}_2 ?

For i = 1, 2, let \mathcal{R}_i be the system of subsets of $\bigcup_{F \in \mathcal{F}_i} F$ broken by \mathcal{F}_i , and $R_3 = \{X \cup \{c\} \mid X \in \mathcal{R}_1 \cap \mathcal{R}_2\}$.

- 8. What can you say about $|\mathcal{R}_3|$?
- 9. Find $|\mathcal{R}_1 \cup \mathcal{R}_2| + |\mathcal{R}_3|$ sets broken by \mathcal{F} , and conclude!

10. Let X be a finite set and \mathcal{F} a set system. Prove that:

$$|X \cap \mathcal{F}| \leq \sum_{i=0}^k \binom{|X|}{i}$$