Combinatorics and Graph Theory III Tutorial 9

Guillaume Aubian

1 VC-dimension

Let H be a set system and C a set. We define $H \cap C=\{h \cap C \mid h \in H\}$. C is said to be broken by H if $|H \cap C|=2^{|C|}$. The $V C$-dimension of H is the largest cardinality of a set that is shattered by H (it can be infinite).

1. What is the VC-dimension of the set system of all subsets of \mathbb{R}^{2} ?
2. What is the VC-dimension of the set system of all convex polygons?
3. What is the VC-dimension of the set system of all half-planes?
4. Consider the system of all axis-aligned rectangles. Prove that it does not break all sets of four points.
5. Prove that the VC-dimension of the set system of all axis-aligned rectangles is 4 .

Let \mathcal{F} be a finite set system. We want to prove that \mathcal{F} breaks at least $|\mathcal{F}|$ subsets of $\bigcup_{F \in \mathcal{F}} F$.
6. Prove it whenever $|\mathcal{F}| \leq 1$.

Thus we can suppose $|\mathcal{F}| \geq 2$, and thus there exists $c \in \bigcup_{F \in \mathcal{F}} F$ that does not appear in every set of \mathcal{F}.
Let \mathcal{F}_{1} be the sets of \mathcal{F} containing c, and \mathcal{F}_{2} those not containing c.
7. What can you say about a set broken by \mathcal{F}_{1} or \mathcal{F}_{2} ?

For $i=1,2$, let \mathcal{R}_{i} be the system of subsets of $\bigcup_{F \in \mathcal{F}_{i}} F$ broken by \mathcal{F}_{i}, and $R_{3}=\left\{X \cup\{c\} \mid X \in \mathcal{R}_{1} \cap \mathcal{R}_{2}\right\}$.
8. What can you say about $\left|\mathcal{R}_{3}\right|$?
9. Find $\left|\mathcal{R}_{1} \cup \mathcal{R}_{2}\right|+\left|\mathcal{R}_{3}\right|$ sets broken by \mathcal{F}, and conclude!
10. Let X be a finite set and \mathcal{F} a set system. Prove that:

$$
|X \cap \mathcal{F}| \leq \sum_{i=0}^{k}\binom{|X|}{i}
$$

