Combinatorics and Graph Theory III Tutorial 8

Guillaume Aubian

1 Orientation

Please remind the following theorem:

Theorem 1.1 (Hall,1935)

Let $G=(X \cup Y, E)$ be a bipartite graph with parts X and $Y . G$ admits a matching covering X if and only, for every $W \subseteq X,|W| \leq|\{v \in Y \mid \exists w \in W, w v \in E\}|$.

1. Prove that if a graph G has an orientation in which every vertex has indegree at most d, then every subgraph H of G verifies $|E(H)| \leq d|V(H)|$.

We want to prove that the converse is true.
2. Prove that if every subgraph H of a graph G verifies $|E(H)| \leq d|V(H)|$ then G admits an orientation in which every vertex has indegree at most d.
hint: consider the bipartite graph with vertex set $(V(G) \times\{1, \ldots, d\}) \cup E(G)$ with an edge $(u, i) e$ for every $i \in\{1, \ldots, d\}$ and every endpoint u of every edge e.
3. Prove that every planar graph admits an orientation in which every vertex has indegree at most 3 .
4. Prove that every bipartite planar graph admits an orientation in which every vertex has indegree at most 2 .

2 List-colouring

Given a graph G and a list $L(v)$ of colours for each vertex $v \in V(G)$, a list colouring is a choice function that assigns a colour in $L(v)$ to every vertex $v \in V(G)$ so that adjacent vertices get assigned distinct colours. A graph is k-list-colourable if it has a list colouring for every possible choice of L with $|L(v)|=k$ for every vertex v. The list chromatic number of a graph G is the least number k such that G is k-list colourable.

1. Prove that the list chromatic number of odd cycles is 3 .
2. Prove that the list chromatic number of even cycles is 2 .
3. Prove that the list chromatic number of $K_{3,3}$ is 3 .
4. Prove that the list chromatic number of bipartite graphs is unbounded.
