Combinatorics and Graph Theory III Tutorial 7

Guillaume Aubian

1 Treewidth and Brambles

Definition 1.1

Given a graph G, a tree decomposition is a pair (T,β) with T a tree and $\beta : V(T) \to 2^{V(G)}$. β assigns a bag $\beta(n)$ to each vertex n of T and obeys the following rules:

- for every $v \in V(G)$, there exists $n \in V(T)$ such that $v \in \beta(n)$,
- for every $uv \in E(G)$, there exists $n \in V(T)$ such that $u, v \in \beta(n)$,
- for every $v \in V(G)$, the set $\{n \in V(T) \mid v \in \beta(n)\}$ induces a connected subtree of T.

The width of a tree decomposition is the size of the largest bag minus one. The treewidth tw(G) of a graph G is the minimum width of a tree decomposition of G.

Definition 1.2

A bramble is a family of connected subgraphs of G that all touch each other: for every pair of disjoint subgraphs, there must exist an edge that has one endpoint in each subgraph. The order of a bramble is the smallest size of a set of vertices of G that has a nonempty intersection with each of the subgraphs.

1.1 A few examples

Theorem 1.3 (Seymour, Thomas, 1993)

A graph has a bramble of order k if and only if it has treewidth at least k - 1.

1. What is the treewidth of the cube graph?

2. What is the treewidth of the Petersen graph?

3. Let $n \ge 1$ be an integer. The grid graph, denoted G_n , is the graph with vertex set $[1,n]^2$ and an edge between vertices u and v if and only if $u - v \in \{(0, -1), (0, 1), (-1, 0), (1, 0)\}$. What is the treewidth of G_n ?

1.2 **Upper-bounding the treewidth**

1. Let Z be a set of vertices of G, and let B be the set of all subsets S of V(G) such that G[S] is connected and
$$\begin{split} |S \cap Z| > \frac{|Z|}{2}. \\ \bullet \ B \text{ is a bramble} \end{split}$$

• the order of the bramble B is the minimum size of a set $X \subseteq V(G)$ such that every component of G - Xcontains at most half of the vertices of Z.

2. If every bramble in G has order at most k, then $tw(G) \leq 3k$. hint 1: remember we proved the following last week:

• for a set Z of vertices of a graph G, let G + Z denote the graph obtained from G by adding all edges between vertices of Z (turning it into a clique). Let X, Z be sets of vertices. For each component K of G - X, let $G_K = G[K \cup X]$ and $Z_K = (Z \cap K) \cup X$. If $tw(G_K + Z_K) \leq t$ for every component K of G - X, then $tw(G+Z) \le \max(t, |Z \cup X| - 1).$

hint 2: actually prove the following stronger claim: for every set Z of at most 2k + 1 vertices of G, the graph G + Z has treewidth at most 3k.