# Combinatorics and Graph Theory III <br> Tutorial 6 

Guillaume Aubian

## 1 Treewidth

## Definition 1.1

Given a graph $G$, a tree decomposition is a pair $(T, \beta)$ with $T$ a tree and $\beta: V(T) \rightarrow 2^{V(G)} . \beta$ assigns a bag $\beta(n)$ to each vertex $n$ of $T$ and obeys the following rules:

- for every $v \in V(G)$, there exists $n \in V(T)$ such that $v \in \beta(n)$,
- for every $u v \in E(G)$, there exists $n \in V(T)$ such that $u, v \in \beta(n)$,
- for every $v \in V(G)$, the set $\{n \in V(T) \mid v \in \beta(n)\}$ induces a connected subtree of $T$.

The width of a tree decomposition is the size of the largest bag minus one. The treewidth $\operatorname{tw}(G)$ of a graph $G$ is the minimum width of a tree decomposition of $G$.


Prove the following:

1. Let $(T, \beta)$ be a tree decomposition of a graph $G$. For a subtree $T^{\prime}$ of $T$, let $G\left[T^{\prime}\right]$ be the subgraph of $G$ induced by $\bigcup_{x \in V\left(T^{\prime}\right)} \beta(x)$. If $e=u v$ is an edge of $T$ and $T^{\prime}$ and $T^{\prime \prime}$ are the two components of $T-e$, then $G=G\left[T^{\prime}\right] \cup G\left[T^{\prime \prime}\right]$ and $V\left(G\left[T^{\prime}\right] \cap G\left[T^{\prime \prime}\right]\right)=\beta(u) \cap \beta(v)$ i.e. $X=\beta(u) \cap \beta(v)$ is a cut in $G$ separating $G\left[T^{\prime}\right]-X$ from $G\left[T^{\prime \prime}\right]-X$.

For an assignment $w$ of non-negative weights to vertices of a graph $G$ and a subgraph $F$ of $G$, let $w(F)$ be the sum of the weights of the vertices of $F$.
2. If $T$ is a tree, then there exists a vertex $v$ such that every component $K$ of $T-v$ satisfies $w(K) \leq \frac{w(T)}{2}$.
hint: a directed graph in which every vertex sees another vertex has a directed cycle.
3. If $G$ has treewidth $k$, then there exists a set $X$ of at most $k+1$ vertices of $G$ such that every component $K$ of $G-X$ satisfies $w(K) \leq \frac{w(G)}{2}$ i.e. graphs of small treewidth have small balanced cuts.
4. For a set $Z$ of vertices of a graph $G$, let $G+Z$ denote the graph obtained from $G$ by adding all edges between vertices of $Z$ (turning it into a clique). Let $X, Z$ be sets of vertices. For each component $K$ of $G-X$, let $G_{K}=G[K \cup X]$ and $Z_{K}=(Z \cap K) \cup X$. If $t w\left(G_{K}+Z_{K}\right) \leq t$ for every component $K$ of $G-X$, then $t w(G+Z) \leq \max (t,|Z \cup X|-1)$.

## 2 Brambles

## Definition 2.1

A bramble is a family of connected subgraphs of $G$ that all touch each other: for every pair of disjoint subgraphs, there must exist an edge that has one endpoint in each subgraph. The order of a bramble is the smallest size of a set of vertices of $G$ that has a nonempty intersection with each of the subgraphs.


A graph has a bramble of order $k$ if and only if it has treewidth at least $k-1$.

1. Let $Z$ be a set of vertices of $G$, and let $B$ be the set of all subsets $S$ of $V(G)$ such that $G[S]$ is connected and $|S \cap Z|>\frac{|Z|}{2}$.

- $B$ is a bramble
- the order of the bramble $B$ is the minimum size of a set $X \subseteq V(G)$ such that every component of $G-X$ contains at most half of the vertices of $Z$.

2. If every bramble in $G$ has order at most $k$, then $t w(G) \leq 3 k$.
hint 1: use the last two questions.
hint 2: actually prove the following stronger claim: for every set $Z$ of at most $2 k+1$ vertices of $G$, the graph $G+Z$ has treewidth at most $3 k$.
