# Combinatorics and Graph Theory III Tutorial 4 

Guillaume Aubian

## 1 Hajós was wrong

Hajós conjectured the following :

## Conjecture 1.1

For every $k \in \mathbb{N}$, every graph without $K_{k}$ as a topological minor has chromatic number less than $k$.
This has been disproved since then. Let us see how!
Assume Hajós conjecture holds. Let $t \in \mathbb{N}$. Let $G$ be a graph with $n$ vertices which contains neither a clique nor an independent set of size $t$.

1. Prove that this implies that for $k=\left\lfloor\frac{n}{t}\right\rfloor, G$ contains $K_{k}$ as a topological minor.

For the following question, we need Turan's theorem (see proof on chalkboard):

## Theorem 1.2

A graph on $n$ vertex with no $K_{t}$ has at most $\left(1-\frac{1}{t}\right) \frac{n^{2}}{2}$ edges.
2. Prove that this implies $|V(G)| \leq 2 t^{3}$.

This is a contradiction since Erdös proved the following:

## Theorem 1.3

For any $t \in \mathbb{N}$ there exist graphs on $2^{\left\lfloor\frac{t}{2}\right\rfloor}$ vertices with no clique nor independent set of size $t$.
3. The proof is nice and important: start from an empty graph on $n=\left\lfloor 2^{\frac{t}{2}}\right\rfloor$ vertices, add every possible edge with probability $\frac{1}{2}$ and upper-bounds the probability that there is a clique or an independent set on $t$ vertices. Do the actual computation.
4. What is the smallest $k$ for which this contradicts Hajós' conjecture?

## 2 2-Linkedness

## Definition 2.1

$G$ is 2-linked if for any four distinct vertices $s_{1}, s_{2}, t_{1}, t_{2}$, there exist vertex-disjoint $s_{i} t_{i}$-path for $i=1,2$.
You can assume the following theorem:

## Theorem 2.2

Every non-planar 4-connected graph is 2-linked.

1. What can you say about the minimum k such that every $k$-connected graph is 2 -linked?
2. Let $G$ be a plane 4 -connected graph, and let $s_{1}, s_{2}, t_{1}, t_{2}$ be vertices of $G$ not on the same face. Prove that $G$ contains vertex-disjoint paths from $s_{1}$ to $t_{1}$ and from $s_{2}$ to $t_{2}$.
hint: Add a well-chosen cycle and argue that $G$ becomes non-planar.
